The **Advanced Encryption Standard** (**AES**), also known as **Rijndael** (its original name), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

AES is based on the Rijndael cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes.

For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits.

AES has been adopted by the U.S. government and is now used worldwide. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data.

In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on November 26, 2001. This announcement followed a five-year standardization process in which fifteen competing designs were presented and evaluated, before the Rijndael cipher was selected as the most suitable (see Advanced Encryption Standard process for more details).

AES became effective as a federal government standard on May 26, 2002 after approval by the Secretary of Commerce. AES is included in the ISO/IEC 18033-3 standard. AES is available in many different encryption packages, and is the first publicly accessible and open^{} cipher approved by the National Security Agency (NSA) for top secret information when used in an NSA approved cryptographic module (see Security of AES, below).

The name *Rijndael* (Dutch pronunciation: [inda]) is a play on the names of the two inventors (Joan Daemen and Vincent Rijmen).

## Definitive standards

The Advanced Encryption Standard (AES) is defined in each of:

- FIPS PUB 197: Advanced Encryption Standard (AES)
- ISO/IEC 18033-3: Information technology — Security techniques — Encryption algorithms — Part 3: Block ciphers

## Description of the cipher

AES is based on a design principle known as a substitution-permutation network, combination of both substitution and permutation, and is fast in both software and hardware. Unlike its predecessor DES, AES does not use a Feistel network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits. By contrast, the Rijndael specification *per se* is specified with block and key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a maximum of 256 bits.

AES operates on a 4×4 column-major order matrix of bytes, termed the *state*, although some versions of Rijndael have a larger block size and have additional columns in the state. Most AES calculations are done in a special finite field.

For instance, if there are 16 bytes, b_{0},b_{1},...,b_{15}, these bytes are represented as this matrix:

The key size used for an AES cipher specifies the number of repetitions of transformation rounds that convert the input, called the plaintext, into the final output, called the ciphertext. The number of cycles of repetition are as follows:

- 10 cycles of repetition for 128-bit keys.
- 12 cycles of repetition for 192-bit keys.
- 14 cycles of repetition for 256-bit keys.

Each round consists of several processing steps, each containing four similar but different stages, including one that depends on the encryption key itself. A set of reverse rounds are applied to transform ciphertext back into the original plaintext using the same encryption key.

### High-level description of the algorithm

- KeyExpansions—round keys are derived from the cipher key using Rijndael's key schedule. AES requires a separate 128-bit round key block for each round plus one more.
- InitialRound
- AddRoundKey—each byte of the state is combined with a block of the round key using bitwise xor.

- Rounds
- SubBytes—a non-linear substitution step where each byte is replaced with another according to a lookup table.
- ShiftRows—a transposition step where the last three rows of the state are shifted cyclically a certain number of steps.
- MixColumns—a mixing operation which operates on the columns of the state, combining the four bytes in each column.
- AddRoundKey

- Final Round (no MixColumns)
- SubBytes
- ShiftRows
- AddRoundKey.

### The SubBytes step

In the SubBytes step, each byte in the state is replaced with its entry in a fixed 8-bit lookup table, *S*; *b _{ij}* =

*S(a*.

_{ij})In the SubBytes step, each byte in the *state* matrix is replaced with a SubByte using an 8-bit substitution box, the Rijndael S-box. This operation provides the non-linearity in the cipher. The S-box used is derived from the multiplicative inverse over **GF**(*2 ^{8}*), known to have good non-linearity properties. To avoid attacks based on simple algebraic properties, the S-box is constructed by combining the inverse function with an invertible affine transformation. The S-box is also chosen to avoid any fixed points (and so is a derangement), i.e., , and also any opposite fixed points, i.e., . While performing the decryption, Inverse SubBytes step is used, which requires first taking the affine transformation and then finding the multiplicative inverse (just reversing the steps used in SubBytes step).

### The ShiftRows step

In the ShiftRows step, bytes in each row of the state are shifted cyclically to the left. The number of places each byte is shifted differs for each row.

The ShiftRows step operates on the rows of the state; it cyclically shifts the bytes in each row by a certain offset. For AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the third and fourth rows are shifted by offsets of two and three respectively. For blocks of sizes 128 bits and 192 bits, the shifting pattern is the same. Row n is shifted left circular by n-1 bytes. In this way, each column of the output state of the ShiftRows step is composed of bytes from each column of the input state. (Rijndael variants with a larger block size have slightly different offsets). For a 256-bit block, the first row is unchanged and the shifting for the second, third and fourth row is 1 byte, 3 bytes and 4 bytes respectively—this change only applies for the Rijndael cipher when used with a 256-bit block, as AES does not use 256-bit blocks. The importance of this step is to avoid the columns being linearly independent, in which case, AES degenerates into four independent block ciphers.

### The MixColumns step

In the MixColumns step, each column of the state is multiplied with a fixed polynomial *c(x)*.

In the MixColumns step, the four bytes of each column of the state are combined using an invertible linear transformation. The MixColumns function takes four bytes as input and outputs four bytes, where each input byte affects all four output bytes. Together with ShiftRows, MixColumns provides diffusion in the cipher.

During this operation, each column is transformed using a fixed matrix (matrix multiplied by column gives new value of column in the state):

Matrix multiplication is composed of multiplication and addition of the entries. Entries are 8 bit bytes treated as coefficients of polynomial of order x^{7}. Addition is simply XOR. Multiplication is modulo irreducible polynomial x^{8}+x^{4}+x^{3}+x+1. If processed bit by bit then after shifting a conditional XOR with 0x1B should be performed if the shifted value is larger than 0xFF (overflow must be corrected by subtraction of generating polynomial). These are special cases of the usual multiplication in **GF**(*2 ^{8}*).

In more general sense, each column is treated as a polynomial over **GF**(*2 ^{8}*) and is then multiplied modulo x

^{4}+1 with a fixed polynomial c(x) = 0x03 · x

^{3}+ x

^{2}+ x + 0x02. The coefficients are displayed in their hexadecimal equivalent of the binary representation of bit polynomials from

**GF**(2)[x]. The MixColumns step can also be viewed as a multiplication by the shown particular MDS matrix in the finite field

**GF**(

*2*). This process is described further in the article Rijndael mix columns.

^{8}### The AddRoundKey step

In the AddRoundKey step, each byte of the state is combined with a byte of the round subkey using the XOR operation (?).

In the AddRoundKey step, the subkey is combined with the state. For each round, a subkey is derived from the main key using Rijndael's key schedule; each subkey is the same size as the state. The subkey is added by combining each byte of the state with the corresponding byte of the subkey using bitwise XOR.

### Optimization of the cipher

On systems with 32-bit or larger words, it is possible to speed up execution of this cipher by combining the SubBytes and ShiftRows steps with the MixColumns step by transforming them into a sequence of table lookups. This requires four 256-entry 32-bit tables, and utilizes a total of four kilobytes (4096 bytes) of memory — one kilobyte for each table. A round can then be done with 16 table lookups and 12 32-bit exclusive-or operations, followed by four 32-bit exclusive-or operations in the AddRoundKey step.

If the resulting four-kilobyte table size is too large for a given target platform, the table lookup operation can be performed with a single 256-entry 32-bit (i.e. 1 kilobyte) table by the use of circular rotates.

Using a byte-oriented approach, it is possible to combine the SubBytes, ShiftRows, and MixColumns steps into a single round operation.

## Security

Until May 2009, the only successful published attacks against the full AES were side-channel attacks on some specific implementations. The National Security Agency (NSA) reviewed all the AES finalists, including Rijndael, and stated that all of them were secure enough for U.S. Government non-classified data. In June 2003, the U.S. Government announced that AES could be used to protect classified information:

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and 256) are sufficient to protect classified information up to the SECRET level. TOP SECRET information will require use of either the 192 or 256 key lengths. The implementation of AES in products intended to protect national security systems and/or information must be reviewed and certified by NSA prior to their acquisition and use.

AES has 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. By 2006, the best known attacks were on 7 rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for 256-bit keys.